Identification and Characterization of MicroRNAs Controlled by the Osteoblast-Specific Transcription Factor Osterix

نویسندگان

  • Qin Chen
  • Wenbin Liu
  • Krishna M. Sinha
  • Hideyo Yasuda
  • Benoit de Crombrugghe
چکیده

Osterix (Osx) is an osteoblast-specific transcription factor which is essential for bone formation. MicroRNAs (miRNAs) have been previously shown to be involved in osteogenesis. However, it is unclear whether Osx is involved in the regulation of miRNA expression. In this study, we have identified groups of miRNAs that are differentially expressed in calvaria of the E18.5 Osx(-/-) embryos compared to wild type embryos. The correlation between the levels of miRNAs and Osx expression was further verified in cultured M-Osx cells in which over-expression of Osx is inducible. Our results suggest that Osx down-regulates expression of a group of miRNAs including mir-133a and -204/211, but up-regulates expression of another group of miRNAs such as mir-141/200a. Mir-133a and -204/211 are known to target the master osteogenic transcription factor Runx2. Further assays suggest that Sost, which encodes the Wnt signaling antagonist Sclerostin, and alkaline phosphatase (ALP) are two additional targets of mir-204/211. Mir-141/200a has been known to target the transcription factor Dlx5. Thus, we postulate that during the process of Osx-controlled osteogenesis, Osx has the ability to coordinately modulate Runx2, Sclerostin, ALP and Dlx5 proteins at levels appropriate for optimal osteoblast differentiation and function, at least in part, through regulation of specific miRNAs. Our study shows a tight correlation between Osx and the miRNAs involved in bone formation, and provides new information about molecular mechanisms of Osx-controlled osteogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Bone Metabolism

Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation,...

متن کامل

Role of Osterix and MicroRNAs in Bone Formation and Tooth Development

Osterix (Osx) is an osteoblast-specific transcription factor that is essential for bone formation. MicroRNAs (miRNAs) are ~22-nucleotide-long noncoding RNAs that play important regulatory roles in animals and plants by targeting mRNAs for cleavage or translational repression. They can also control osteoblast-mediated bone formation and osteoclast-related bone remodeling. The vital roles of Osx ...

متن کامل

The transcription factor osterix (SP7) regulates BMP6-induced human osteoblast differentiation.

The transcription factor osterix (Sp7) is essential for osteoblastogenesis and bone formation in mice. Genome wide association studies have demonstrated that osterix is associated with bone mineral density in humans; however, the molecular significance of osterix in human osteoblast differentiation is poorly described. In this study we have characterized the role of osterix in human mesenchymal...

متن کامل

Regulation of the osteoblast-specific transcription factor Osterix by NO66, a Jumonji family histone demethylase

Osterix (Osx) is an osteoblast-specific transcription factor required for osteoblast differentiation and bone formation. Osx null mice develop a normal cartilage skeleton but fail to form bone and to express osteoblast-specific marker genes. To better understand the control of transcriptional regulation by Osx, we identified Osx-interacting proteins using proteomics approaches. Here, we report ...

متن کامل

Inhibition of Wnt signaling by the osteoblast-specific transcription factor Osterix.

The recent identification of the genes responsible for several human genetic diseases affecting bone homeostasis and the characterization of mouse models for these diseases indicated that canonical Wnt signaling plays a critical role in the control of bone mass. Here, we report that the osteoblast-specific transcription factor Osterix (Osx), which is required for osteoblast differentiation, inh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013